Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fan Zhang, ${ }^{\text {a }}$ Hans-Wolfram Lerner ${ }^{\text {a }}$ and Michael Bolte ${ }^{b_{*}}$

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\text {b }}$ Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.023$
$w R$ factor $=0.049$
Data-to-parameter ratio $=22.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[(2,6-Diisopropylphenyl)iminio]propyl bromide

In the title structure, $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$, there is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{Br}=2.35$ (2) \AA A $]$ and several short $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ contacts.

Comment

Oligonuclear aggregates of organometallic compounds are currently attracting growing attention. Useful applications can be anticipated in the fields of magnetic and electronic materials (Henry, 1992). In this context, a variety of systems containing ferrocenyl moieties, e.g. the complex (1) (see Scheme below), have been synthesized (Ma et al., 2002).

(2)

The properties of complex (2) are of particular interest to us, but in an attempt to crystallize complex (2), crystals of the title compound, (I), were grown from the reaction solution.

The geometric parameters of the title compound may be regarded as normal. The plane consisting of the iminium bond and the two attached methyl C atoms is nearly perpendicular to the phenyl ring; the two planes enclose an angle of $84.87(5)^{\circ}$. As well as the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond, there are several other short $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts (see Table 2).

Experimental

Crystals of (I) were grown from a hexane solution of the products of reaction of dibromoferrocenylborane with 2,6-diisopropylaniline (yield 10%). The NMR spectra were recorded on a Bruker DPX 250 spectrometer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, internal TMS): $\delta 1.17\left(d ; \mathrm{CH}_{3},{ }^{3} \mathrm{~J}=\right.$ $6.88 \mathrm{~Hz}), 1.30\left(d ; \mathrm{CH}_{3},{ }^{3} J=6.73 \mathrm{~Hz}\right), 2.15\left(s ; \mathrm{CH}_{3}\right), 2.77(m ; 2 \mathrm{CH})$, $3.09\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 7.28(\mathrm{~m}), 7.42(\mathrm{~m})$.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=298.26$
Monoclinic, $P 2_{1} / c$
$a=13.0623$ (9) A
$b=10.9266$ (5) \AA
$c=11.6561$ (8) \AA
$\beta=111.958(5)^{\circ}$
$V=1542.95(17) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.389, T_{\text {max }}=0.489$
34535 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.049$
$S=1.01$
3605 reflections
160 parameters
$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 30660 reflections
$\theta=3.5-27.5^{\circ}$
$\mu=2.65 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Block, colourless
$0.39 \times 0.33 \times 0.27 \mathrm{~mm}$

3605 independent reflections 3047 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=27.7^{\circ}$
$h=-16 \rightarrow 17$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 15$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0295 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 9$	$1.2900(18)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.482(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4521(17)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.4888(19)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$125.98(12)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$119.10(13)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 11$	$122.17(13)$	$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$118.73(13)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	$0.85(2)$	$2.35(2)$	$3.1957(12)$	$177(2)$
$\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{Br} 1$	0.98	3.09	$3.9088(16)$	143
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br}^{\mathrm{i}}$	1.00	3.12	$3.8356(14)$	130
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Br}^{\mathrm{ii}}$	1.00	3.05	$3.9015(13)$	144
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.98	3.03	$3.6806(15)$	125
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.98	2.99	$3.7391(16)$	134
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	3.08	$4.0109(15)$	159

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Figure 1
Perspective view of the title compound, with the atom numbering scheme; displacement ellipsoids are drawn at the 50% probability level.

H atoms bonded to C atoms were refined with fixed individual displacement parameters [$U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C $)$], using a riding model with aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$, tertiary $\mathrm{C}-\mathrm{H}=$ $1.00 \AA$ or methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$ and methyl groups C 10 and C11 were allowed to rotate but not to tip. The H atom bonded to the N atom was refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Henry, M. C. (1992). Inorganic Materials, edited by D. W. Bruce \& D. O’Hare, ch. 2, pp. 65-117. Chichester: John Wiley and Sons.
Ma, K., Lerner, H.-W., Scholz, S., Bats, J., Bolte, M. \& Wagner, M. (2002). J. Organomet. Chem. 664, 94-105.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

